Classical Families of Univalent Functions in the Hornich Space
نویسنده
چکیده
In this paper the simple structure between some convex sets in the Banach space H introduced by Hornich is used to determine the extreme points of the families K(a) of convex functions of order ~ and V(k) of functions with bounded boundary rotation k ~. For close-to-convex functions of order {1,/3 ~ ]0, 1[, a partial result is given. The results for K(~) and V(k) agree with those that hold for the closed convex hulls of the same families with respect to the usual linear structure and the topology of locally uniform convergence. However, in this case, for kE]2,4[ the question of determining the extreme points of ~d V(k) is still open.
منابع مشابه
Fekete-Szeg"o problems for analytic functions in the space of logistic sigmoid functions based on quasi-subordination
In this paper, we define new subclasses ${S}^{*}_{q}(alpha,Phi),$ ${M}_{q}(alpha,Phi)$ and ${L}_{q}(alpha,Phi)$ of analytic functions in the space of logistic sigmoid functions based on quasi--subordination and determine the initial coefficient estimates $|a_2|$ and $|a_3|$ and also determine the relevant connection to the classical Fekete--Szeg"o inequalities. Further, we discuss the improved ...
متن کاملCoefficient bounds for a new class of univalent functions involving Salagean operator and the modified Sigmoid function
We define a new subclass of univalent function based on Salagean differential operator and obtained the initial Taylor coefficients using the techniques of Briot-Bouquet differential subordination in association with the modified sigmoid function. Further we obtain the classical Fekete-Szego inequality results.
متن کاملCertain subclasses of bi-univalent functions associated with the Aghalary-Ebadian-Wang operator
In this paper, we introduce and investigate two new subclasses of the functions class $ Sigma $ of bi-univalent functions defined in the open unit disk, which are associated with the Aghalary-Ebadian-Wang operator. We estimate the coefficients $|a_{2} |$ and $|a_{3} |$ for functions in these new subclasses. Several consequences of the result are also pointed out.
متن کاملIdentification of Initial Taylor-Maclaurin Coefficients for Generalized Subclasses of Bi-Univalent Functions
In the present work, the author determines some coefficient bounds for functions in a new class of analytic and bi-univalent functions, which are introduced by using of polylogarithmic functions. The presented results in this paper one the generalization of the recent works of Srivastava et al. [26], Frasin and Aouf [13] and Siregar and Darus [25].
متن کاملFaber polynomial coefficient estimates for bi-univalent functions defined by subordinations
A function is said to be bi-univalent on the open unit disk D if both the function and its inverse are univalent in D. Not much is known about the behavior of the classes of bi-univalent functions let alone about their coefficients. In this paper we use the Faber polynomial expansions to find coefficient estimates for four well-known classes of bi-univalent functions which are defined by subord...
متن کامل